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Nonlinear model for Marangoni convection
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We have constructed a Lorenz-like model for Marangoni convection with finite wave number in large aspect
ratio situations. Within the model, there is exchange of stabilities at the onset of convection and beyond the
onset there is onset of oscillations due to the presence of surface fluctuations. The oscillations become chaotic
as the Marangoni number is increased.
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I. INTRODUCTION

For the problem of buoyancy driven convection, fe
mode models have been popular for studying the first ef
of nonlinearities in the system. The first study of this ki
was due to Lorenz@1#, whose three mode truncation show
the presence of a strange attractor in the system and wa
forerunner of all the subsequent work on chaos in dynam
systems. The latter studies on truncated modes have h
more restricted goal, generally studying the first effect of
nonlinearities on the convecting state. Of particular r
evance in this context are the studies carried out on trunc
systems for the onset of convection in the binary liqu
@2–4# and on the onset of Kuepper-Lortz instability in co
vection in rotating fluids@5–7#. In the case of pure surface
tension driven convection@8–11# ~Marangoni convection! a
few mode truncation has not been attempted. This is pres
ably due to the technical difficulties associated with the f
surface and the fact that the control parameter~Marangoni
number! occurs only in a boundary condition. However, t
free surface also offers interesting possibilities — there
waves, which can be propagated on a free surface. This c
induce oscillatory convection. Oscillatory behavior has n
yet been observed at the onset for large aspect ratio but a
same time it has not been possible to establish a principl
exchange of stabilities. The effect of free surface on M
rangoni convection has been studied from the point of v
of amplitude equations by Golovinet al. @12#. They have
considered a situation where the long-wavelength instab
and finite wavelength instabilities occur with almost t
same Marangoni number and thus there is strong interac
between the modes with zero wave number and finite w
number. Coupled amplitude equations were written down
these modes and solved numerically by Kazhdanet al. @13#.
We are working in a parameter regime (Cr,0.000 83)
where the long-wavelength instability is suppressed. Surf
fluctuations will still exist since the top surface is free a
our purpose will be to construct a dynamical system fo
situation where a finite wave number instability occurs in
presence of surface deflections. The linear stability prob
can be exactly solved analytically when the convection
driven purely by surface tension. For high surface tens
the onset occurs at finite wave numbers and it is known
the critical Marangoni number isMc580.1 and the critical
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wave numberac52.0. The velocity and temperature mod
are also exactly known. This allows us to set up our Galer
model with confidence. We will follow the strategy of usin
the exact velocity field at the onset as the lowest veloc
mode and using a variational function for the temperat
mode. The latter is pragmatic because we need an orthog
set for introductory higher modes in the temperature fie
How good is the variational function? This will be dete
mined by how closely we can reproduce the onset Marang
number from our truncated system. As we will see later, t
occurs with an accuracy of 5%, thus establishing the r
ability of our method.

The advantage of using the truncated Lorenz-like mode
that one can now make predictions, which include the eff
of the nonlinearity. The first thing that we find with ou
model is that at the onset, the convection can only be stat
ary. This is not a rigorous general result — it is only tru
within our model, but it is interesting that no experiment
computation has seen a Hopf bifurcation at the onset of M
rangoni convection with large surface tension. The most
portant finding is that the steady convection bifurcates
Hopf bifurcation to an oscillatory pattern. Unlike in the Lo
renz model for Rayleigh-Benard convection, this limit cyc
is stable although over a small range. While this is a resul
our model, this should have general validity — physica
the limit cycle is stabilized by the surface fluctuations — t
ripples on the surface due to surface tension. This is the m
important point we wish to make — the secondary instabi
in this system should be an oscillatory instability. With
further increase in the Marangoni number, there is a tra
tion to a chaotic state. There is a significant difference
tween the usual Lorenz attractor and the Marangoni attrac
Future experiments should be able to test the prediction.

The study of nonlinear effects has also been very rest
tive because of the complexities associated with the bou
ary conditions. Consequently, we have undertaken the se
up of a dynamical system for Marangoni convection. With
the dynamical system found by us, there is an exchang
stabilities. However, the steady convection state does
dergo a Hopf bifurcation, primarily because of the surfa
fluctuations. This feature should be generic to the system
experiments on Marangoni convection induced by heat
from below in a large aspect ratio system should be able
see these oscillations if the region above the linear stab
threshold is explored.

II. MATHEMATICAL MODEL

Before proceeding further, we should point out why
model, which can be considered primitive for the Rayleig
©2000 The American Physical Society01-1
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Benard convection, is of our deep interest. This is due to
fact that even some of the very basic issues in Marang
convection have not yet been perfectly settled. As mentio
briefly before, the principle of exchange of stabilities, whi
was proven more than half a century ago for the Raylei
Benard case, remain unproven for the Marangoni case.
fact that the truncated model does not allow a Hopf bifur
tion of the conduction state is consequently a small step
the right direction. Experiments also have been few. Unl
the Rayleigh-Benard case~see, e.g., Ahlers@14#! the first
experimental demonstration@15# of the correctness of the
Pearson calculation was done only five years ego. In
situation, we believe that studying Lorenz models may b
good starting point. In fact Lorenz models can also be
panded to take into account more complicated problems.
will specialize, as is almost always the case with such st
ies, to two-dimensional geometry~the action is in thex2z
plane! and consider incompressible flow. A thin layer
fluid on a conducting plate is heated from below andDT is
the temperature difference between the plate and the
layer of the fluid. The mean thickness of the fluid layer
‘‘ d. ’ ’ The conducting state has a linear temperature pro
Tc(z)5T12bz, whereT1 is the temperature of the bottom
plate andb is the temperature gradient. Our two prima
field variables are thez component of the velocityw(rW,t)
and the deviationu of the temperatureT(rW,t) from the con-
duction state profile. Thex componentu, of the velocity field
can be found from the incompressibility condition.

We will be using dimensionless variables all through. A
distances will be scaled byd, all time by d2/n, wheren is
the kinematic viscosity, velocities byl/d, wherel is the
thermal diffusivity, and temperatures byDT. With the un-
derstanding that¹W 25]2/]x21]2/]z2, the equations describ
ing Marangoni convection are

¹W 2S ¹22
]

]t Dw5$¹W 3¹W 3@~vW "¹W !vW #%z

5
]

]z
@¹W "~vW "¹W !vW #2¹2~vW "¹W !w, ~1!

S ¹W 22s
]

]t D u52w1~vW •¹W !u, ~2!

wheres5n/l is the Prandtl number. The boundary cond
tions are given by

w5
]w

]z
5u50 on z50, ~3!

w5
]h

]t
on z51, ~4!

FB2
]2

]x2GF S ]2

]z2
2

]2

]x2D w2M
]2u

]x2G
5M•CrF ]2

]z2
13

]2

]x2
2

]

]tG ]w

]z
on z51, ~5!
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]z
50 on z51. ~6!

In the above, the variableh denotes the surface fluctuation
M5S0abd2/rnl is the Marangoni number@a5(1/
S0)(]S0 /]T), S0 being the mean surface tension#, Cr
5rnl/S0d is the Crispation number, andB5rd2g/S0 is the
Bond number,r being the density of the fluid.

Now our aim is to simplify the hydrodynamic equation
by Galerkin trunaction. We will expand the independe
variables~velocity and temperature! in a finite number of
basis functions that will transform the nonlinear partial d
ferential equations to a set of coupled nonlinear ordin
differential equations. Now comes the crucial issue of
choice of modes. The phenomenon we want to describ
the formation of stable cylindrical rolls. The axis of the cy
inder is taken along they direction. The selection of mode
should be such that they reflect the circulating velocity a
temperature fields and the transfer of heat from the low
plate to the upper plate. The boundary conditions@Eqs.~3!–
~6!# should be matched by the functions ofz for respective
modes. We take two modes for the velocityw, which we
write as

w5@A~ t !g~z!1B~ t ! f ~z!#cosax. ~7!

If there is no surface tension in the upper surface of the fl
film, the velocity mode should be equal to that of the Lore
model, i.e., thenw5A(t)g(z)cosax. In Marangoni convec-
tion our intuitive prediction is that there should be anoth
function of time, which will describe the time variation o
the height of the upper surface due to the variation of surf
tension over the surface of the film, i.e.,w5]h/]t on z
51. So the modeA(t) corresponds to no surface fluctuatio
and the modeB(t) contains all the information on the su
face fluctuations. So, the requirement isg(1)50, while
f (1)51. The functiong(z) is chosen in such a way thatw

5A(t)g(z)cosax satisfies¹W 4w50 whenA(t) is a constant.
This yields

g~z!5sinhaz2azcoshaz1
ac2s

s
z sinhaz, ~8!

wherec5cosha and s5sinha. Similarly the functionf (z)
also needs to satisfyf (0)5d f(0)/dz50 and accordingly,
we choose

f ~z!5z2. ~9!

With our choice ofg(z), we have ensured that the flow
pattern is exactly obtained in the absence of surface fluc
tions. The boundary conditions ofu make us choose it as

u5C~ t !sin
pz

2
cosax1D~ t !sin

3pz

2
. ~10!

Here the choice of sinpz/2 for the lowest mode is variationa
in character. How good this choice is will be determined
the critical Marangoni number of the model. We have
incorporate another mode because though the mode con
1-2
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FIG. 1. ~a! The conduction
state at M575; ~b! the steady
state atM5150; ~c! the simple
limit cycle at M5202; ~d! the
chaotic attractor atM5280.
e
s
n

ef

ry
g
n
n

e
t o

-

m-

ed
d

e

ing C(t) describes the rolls with finite wave numbera, the
averaging over a cell@i.e, integrating from2(l/2) to l/2
along thex direction, wherel is the wavelength of the cell#
gives zero value, meaning that there is no convection of h
from the lower plate to the upper plate. Now the lowe
nontrivial mode that contributes to the convective heat tra
fer is sin 3pz/2. From the incompressibility condition, thex
componentu of the velocity field works out to beu5
2(1/a)@A(t)g8(z)12B(t)z#sinax. To determine the dy-
namics of the modes, we insertw and u from Eqs.~7! and
~10! into Eq. ~2! and match the corresponding Fourier co
ficients. This gives equations forC andD. As expected these
equations have nonlinear terms. For the modesA andB, we
need to satisfy Eq.~1! in the mean and satisfy the bounda
condition given in Eq.~5!. Interestingly enough, satisfyin
Eq. ~1! in the mean requires no contribution from the no
linear term since thex dependent part of the contributio
from this term is orthogonal to cosax. There is an unknown
variable ‘‘a, ’ ’ the wave number. This is chosen, as in th
Lorenz model, to be the critical wave number at the onse
stationary convection. This givesa.2. In the dynamics of
A, B, C, and D all the coefficients are known. Approxi
mating the coefficients we obtain the dynamical system

3Ȧ1
Ḃ

2
529B, ~11!

9Ȧ2Ḃ52F 13

M Cr
29GA1S 201

3

2MCr DB1
4

Cr
C,

~12!

sĊ5
A

4
1

3B

4
2

13C

2
2AD23BD, ~13!

sḊ52 45
2 D1AC13BC. ~14!
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Thus we have constructed the model for the finite wave nu
ber Marangoni convection.

III. ANALYSIS

The trivial fixed point (A5B5C5D50) corresponds to
the conduction state. The destabilization of the trivial fix
point is found from the linear stability analysis of the fixe
point, which yields the equations

3dȦ1 1
2 dḂ529dB, ~15!

9dȦ2dḂ52F 13

MCr
29GdA1S 201

3

2MCr D dB1
4

Cr
dC,

~16!

sdĊ5
dA

4
1

3dB

4
2

13

2
dC. ~17!

The growth ratep of the fluctuation is obtained from th
roots of a cubic equation. Exchange of stabilities]/]t50
gives us

FIG. 2. Change of state withM.
1-3
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M5M05
169

21117Cr
. ~18!

Although we have a cubic equation for the growth rate —
Hopf bifurcation does not occur and this is the only possi
bifurcation. For Cr50 the critical Marangoni number i
M05 169

2 584.5, and the exact answer in the limit isM0
581, which shows us how good the truncation is, at least
the study of the initial bifurcations. A conclusion can also
made within the model that the first bifurcation is always
exchange of stabilities. Oscillatory instability does not occ
at the onset of convection. It has not been possible to es
lish the principle of exchange of stabilities within the com
plete set of Navier-Stokes’ equations and the heat diffus
equation. However, the onset of convection is always
tionary in all experiments with large aspect ratio. The os
latory convection can occur only for small aspect ratios.

Now, for steady convection state, the nontrivial fix
point of Eqs.~11!–~14! is given by

A0
25

169

2

~1/M021/M !

13/M29Cr
, ~19!

Co
25

169

32 S 13

M
29Cr D S 1

M0
2

1

M D , ~20!

D05
169

8 S 1

M0
2

1

M D . ~21!

From the structure of the fixed point, it can be said imme
ately that the model is valid only for

M,
13

9

1

Cr
. ~22!

From experimental data we know that typical values ofCr is
1023, and this makes the range of validity cover a lar
range of M. The nontrivial fixed point of Eqs.~19!–~21!
exists forM.M0 and it is easy to see that the bifurcation
forward. Our contention regarding the first bifurcation is su
ported by numerical integration of Eqs.~11!–~14!. For Cr
51024, we show in Figs. 1~a! and 1~b!, the trajectory set-
tling down to the trivial fixed point forM,85 and to the
nontrivial fixed point forM.85. Note that forM5150, the
fixed point, where the trajectories end up in Fig. 1~b!, ends
up matching exactly with the nontrivial fixed point shown
Eqs.~19!–~21!.
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We now need to study the stability of the nontrivial fixe
point. To do so, we writeA5A01dX, B501dY, C
5C01dZ, and D5D01dW, insert in Eqs.~11!–~14! and
linearize indX, dY, dZ, anddW. The growth ratep satis-
fies a quartic equation. The condition of Hopf bifurcatio
leads to a quadratic for the critical Marangoni number a
the lower branch is the one, which is relevant. ForCr
51024, this yields a critical Marangoni numberMc.200.
The resulting limit cycle is stable and the result of numeri
computation is shown in Fig. 1~c!.

It is in these limit cycles that the role of the surface flu
tuations become apparent. In the absence of the modB,
there are no stable limit cycles in the system. It is the c
pling of the surface fluctuations to the heat diffusion th
gives rise to the stable limit cycle. It is our contention th
experiments on Marangoni convection, when carried on
yond the initial onset, will show onset of oscillations in larg
aspect ratio systems.

The limit cycle is stable over a small window. IfM is
raised beyond that, the chaotic state appears~Fig. 2!. The
interesting point about this attractor is its geometry. T
strange attractor in the standard Lorenz case correspon
the trajectory randomly switching from the neighborhood
unstable fixed point to another. Here the attractor is form
from the destabilization of a limit cycle and is essentia
centered around an unstable fixed point.

In summary, we have carried out a Lorenz model study
the Marangoni convection occurring at a finite wave numb
This supplements the study of Golovinet al. @12# for the
long-wavelength convection, using an amplitude equat
approach. Within our approach, we have managed to s
that for the large aspect ratio system, the principle of stab
ties is true. This result has not been proven in general
Marangoni convection. Based on our model, we have sho
that cylindrical rolls will undergo a Hopf bifurcation as th
first secondary instability. This feature is absent in t
Rayleigh-Benard convection, where the oscillation has to
with the axis of the cylindrical rolls. Our model does n
include modes giving three-dimensional structure, but it d
make a prediction for a simple situation. This should prov
motivation for experimental investigation of the seconda
instabilities, which in the long run can inspire more comp
cated models.
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