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Nonlinear model for Marangoni convection
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We have constructed a Lorenz-like model for Marangoni convection with finite wave number in large aspect
ratio situations. Within the model, there is exchange of stabilities at the onset of convection and beyond the
onset there is onset of oscillations due to the presence of surface fluctuations. The oscillations become chaotic
as the Marangoni number is increased.
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[. INTRODUCTION wave numbem.=2.0. The velocity and temperature modes
are also exactly known. This allows us to set up our Galerkin
For the problem of buoyancy driven convection, few model with confidenpe. We will follow the strategy of using
mode models have been popular for studying the first effecie exact velocity field at the onset as the lowest velocity
of nonlinearities in the system. The first study of this kindMode and using a variational function for the temperature
was due to Lorenf1], whose three mode truncation showed mode. The latter is pragmatic because we need an orthogonal

the presence of a strange attractor in the system and was t t for introductory higher modes in the temperature field.

forerunner of all the subsequent work on chaos in dynamical ow good is the variational function? This will be deter .
: mined by how closely we can reproduce the onset Marangoni
systems. The latter studies on truncated modes have had

tricted | llv studving the first effect of th ndimber from our truncated system. As we will see later, this
more restricted goal, generally studying the Tirst ettect otin€, o\ s with an accuracy of 5%, thus establishing the reli-
nonlinearities on the convecting state. Of particular rel-

T _ . %bility of our method.
evance in this context are the stud|_es carrled ou_t on trl_mc_ate The advantage of using the truncated Lorenz-like model is
systems for the onset of convection in the binary liquidsihat one can now make predictions, which include the effect
[2—4] and on the onset of Kuepper-Lortz instability in con- of the nonlinearity. The first thing that we find with our
vection in rotating fluid§5-7]. In the case of pure surface- model is that at the onset, the convection can only be station-
tension driven convectio[8—11] (Marangoni convectiona  ary. This is not a rigorous general result—it is only true
few mode truncation has not been attempted. This is presumyithin our model, but it is interesting that no experiment or
ably due to the technical difficulties associated with the freecomputation has seen a Hopf bifurcation at the onset of Ma-
surface and the fact that the control paramébMarangoni  rangoni convection with large surface tension. The most im-
numbej occurs only in a boundary condition. However, the portant finding is that the steady convection bifurcates via
free surface also offers interesting possibilities — there ardlopf bifurcation to an oscillatory pattern. Unlike in the Lo-
waves, which can be propagated on a free surface. This coulénz model for Rayleigh-Benard convection, this limit cycle
induce oscillatory convection. Oscillatory behavior has notis stable although over a small range. While this is a result of
yet been observed at the onset for large aspect ratio but at ti§&lr model, this should have general validity — physically
same time it has not been possible to establish a principle dhe limit cycle is stabilized by the surface fluctuations — the
exchange of stabilities. The effect of free surface on MaJiPPles on the surface due to surface tension. This is the most
rangoni convection has been studied from the point of viewmPortant point we wish to make — the secondary instability
of amplitude equations by Goloviet al. [12]. They have this system should be an oscillatory instability. With a
considered a situation where the long-wavelength instabilit){.urther increase in the Marangoni number, there is a transi-

and finite wavelength instabilities occur with almost the 107 10 @ chaotic state. There is a significant difference be-
same Marangoni number and thus there is strong interacti tween the usual Lorenz attractor and the Marangoni attractor.

bet th q ith b d finit %Future experiments should be able to test the prediction.
etween the modes with zero wave number and fintte wave -, o study of nonlinear effects has also been very restric-

number. Coupled amplitude equations were written down 0k hecause of the complexities associated with the bound-
these modes and solved numerically by Kazhetal. [13]. 51y conditions. Consequently, we have undertaken the setting
We are working in a parameter re'g|me:r(<0.000 83) up of a dynamical system for Marangoni convection. Within
where the Iong'WaVelength |nstab|l|ty IS Suppl’essed. Surfacﬂ]e dynamical system found by us, there is an exchange of
fluctuations will still exist since the tOp surface is free andstab”ities_ However’ the Steady convection state does un-
our purpose will be to construct a dynamical system for adergo a Hopf bifurcation, primarily because of the surface
situation where a finite wave number instability occurs in thefluctuations. This feature should be generic to the system and
presence of surface deflections. The linear stability problenexperiments on Marangoni convection induced by heating
can be exactly solved analytically when the convection isfrom below in a large aspect ratio system should be able to
driven purely by surface tension. For high surface tensionsee these oscillations if the region above the linear stability
the onset occurs at finite wave numbers and it is known thathreshold is explored.
the critical Marangoni number i81,=80.1 and the critical
IIl. MATHEMATICAL MODEL
Before proceeding further, we should point out why a
*Email address: tpksd@mahendra.iacs.res.in model, which can be considered primitive for the Rayleigh-
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Benard convection, is of our deep interest. This is due to thand

fact that even some of the very basic issues in Marangoni
convection have not yet been perfectly settled. As mentioned
briefly before, the principle of exchange of stabilities, which
was proven more than half a century ago for the Rayleigh

Benard case, remain unproven for the Marangoni case. T

fact that the truncated model does not allow a Hopf bifurca

tion of the conduction state is consequently a small step i
the right direction. Experiments also have been few. Unlik
the Rayleigh-Benard casgsee, e.g., Ahler§14]) the first

experimental demonstratiofl5] of the correctness of the by
Pearson calculation was done only five years ego. In thi

situation, we believe that studying Lorenz models may be

ies, to two-dimensional geometiyhe action is in thex—z
plane and consider incompressible flow. A thin layer of
fluid on a conducting plate is heated from below and is

36
—=0

on z=1.
0z

(6)

In the above, the variable denotes the surface fluctuation,
=SyaBd?pv\ is the Marangoni number[a=(1/
S)(0Sy/dT), Sy being the mean surface tensjprCr

n—‘pv)\/SOd is the Crispation number, alg= pd?g/S, is the
®Bond numberp being the density of the fluid.

Now our aim is to simplify the hydrodynamic equations
Galerkin trunaction. We will expand the independent

%ariables(velocity and temperatuyein a finite number of

: . Basis functions that will transform the nonlinear partial dif-
good starting point. In fact Lorenz models can also be exs

panded to take into account more complicated problems. W
will specialize, as is almost always the case with such stud

erential equations to a set of coupled nonlinear ordinary
fifferential equations. Now comes the crucial issue of the
choice of modes. The phenomenon we want to describe is
the formation of stable cylindrical rolls. The axis of the cyl-
inder is taken along thg direction. The selection of modes
should be such that they reflect the circulating velocity and

the temperature difference between the plate and the Oy herature fields and the transfer of heat from the lower

layer of the fluid. The mean thickness of the fluid layer is

plate to the upper plate. The boundary conditifiags.(3)—

“d.” The conducting state has a linear temperature profile(6)] should be matched by the functions ofor respective
To(2)=T,— Bz, whereT, is the temperature of the bottom 5qes. We take two modes for the velocity which we

plate andg is the temperature gradient. Our two primary
field variables are the component of the velocityv(r t)

and the deviatiord of the temperaturd@(r,t) from the con-
duction state profile. The component, of the velocity field
can be found from the incompressibility condition.

We will be using dimensionless variables all through. All
distances will be scaled by, all time by d?/v, wherev is
the kinematic viscosity, velocities by/d, where\ is the
thermal diffusivity, and temperatures kyT. With the un-

derstanding tha¥ 2= 9%/ ax%+ 3/ 3z2, the equations describ-
ing Marangoni convection are

ﬁz(vz—i)w:{§X§X[(J-ﬁ)5]}
gt z

Jd - 4 o N
E[V-(v-V)v]—VZ(U-V)W, (1)

6=—w+(v-V)8, 2

> d
2_ 54—
(V oo

where o= v/\ is the Prandtl number. The boundary condi-
tions are given by

i 0=0 0 3
w= o7 0= on z=0, 3
an

W—E on z=1, (4)

3 P 3 %0

ax2||\ a2 ox3 NG
M-C i 382 i 1 5
=M-Cr 2 S dt| oz on z=1, (5

write as

w=[A(t)g(z) +B(t)f(z)]cosax. (7

If there is no surface tension in the upper surface of the fluid
film, the velocity mode should be equal to that of the Lorenz
model, i.e., therw=A(t)g(z)cosax. In Marangoni convec-
tion our intuitive prediction is that there should be another
function of time, which will describe the time variation of
the height of the upper surface due to the variation of surface
tension over the surface of the film, i.ev=4d7%/dt on z
=1. So the modé\(t) corresponds to no surface fluctuation
and the modeaB(t) contains all the information on the sur-
face fluctuations. So, the requirement @¢1)=0, while
f(1)=1. The functiong(z) is chosen in such a way that

=A(t)g(z)cosax satisfiesV4w=0 whenA(t) is a constant.
This yields

ac

®

s
zsinhaz,

g(z)=sinhaz—azcoshaz+

where c=cosha and s=sinha. Similarly the functionf(z)
also needs to satisf§(0)=df(0)/dz=0 and accordingly,
we choose

f(z2)=2°

(€)

With our choice ofg(z), we have ensured that the flow
pattern is exactly obtained in the absence of surface fluctua-
tions. The boundary conditions &f make us choose it as

Tz

6=C(t)sin 5

cosax+ D(t)sin (10

2

Here the choice of sirz/2 for the lowest mode is variational

in character. How good this choice is will be determined by
the critical Marangoni number of the model. We have to
incorporate another mode because though the mode contain-
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ing C(t) describes the rolls with finite wave numbarthe  Thus we have constructed the model for the finite wave num-

averaging over a celli.e, integrating from—(\/2) to \/2 ~ ber Marangoni convection.

along thex direction, where\ is the wavelength of the céll

gives zero value, meaning that there is no convection of heat I1. ANALYSIS

from the lower plate to the upper plate. Now the lowest o )

nontrivial mode that contributes to the convective heat trans- 1 e trivial fixed point A=B=C=D=0) corresponds to

fer is sin 37z/2. From the incompressibility condition, the theT cc_)nductlon state. The destabllllgatlon of tlhe trivial f|xed

componentu of the velocity field works out to bei= po!nt is f(_)und_from the Ilnear stability analysis of the fixed

—(L)[A(t)g' (2) + 2B(t)z]sinax To determine the dy- POint which yields the equations

namics of the modes, we insextand 6 from Egs.(7) and . .

(10) into Eqg. (2) and match the corresponding Fourier coef- 36A+35B=—-96B, (15

ficients. This gives equations f@ andD. As expected these

equations have nonlinear terms. For the moflesd B, we [ 13
——-9

+
MCr oA

need to satisfy Eq.l) in the mean and satisfy the boundary 96A— 6B=— 20+
condition given in Eq.5). Interestingly enough, satisfying
Eqg. (1) in the mean requires no contribution from the non-
linear term since thex dependent part of the contribution
from this term is orthogonal to c@x There is an unknown oSC= %+ @_ E’ c 17)
variable “a,” the wave number. This is chosen, as in the 4 4 2

Lorenz model, to be the critical wave number at the onset of

stationary convection. This gives=2. In the dynamics of The growth ratep of the fluctuation is obtained from the
A, B, C, andD all the coefficients are known. Approxi- roots of a cubic equation. Exchange of stabilit#st=0
mating the coefficients we obtain the dynamical system  gives us

oB 4 o6C
+ &7 9C,
(16)

2MCr

. B A A
3A+5=-9B, (11
e
N B _ S s Cycle
9A [M Cr 9|A+]| 20+ 2MCr B+ CrC’ Fixed
(12) Point
o A 3B 13C
UC_Z"’T—T_AD_?’BD’ (13 85 200 206 ¥
M
oD=-%D+AC+3BC. (14 FIG. 2. Change of state with.
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169 We now need to study the stability of the nontrivial fixed
M=Mo=5—T17r" (18)  point. To do so, we writtA=Ay+6X, B=0+4Y, C
=Cp+6Z, andD=Dgy+ éW, insert in Eqs.(11)—(14) and

Although we have a cubic equation for the growth rate — ainearize inéX, &Y, 6Z, andéW. The growth rate satis-

Hopf bifurcation does not occur and this is the only possiblg®S @ quartic equation. The condition of Hopf bifurcation
bifurcation. For Cr=0 the critical Marangoni number is €ads t0 & quadratic for the critical Marangoni number and
Mo=122=845 and the exact answer in the limit ig, the lower branch is the one, which is relevant. For

2 =~

=104, this yields a critical Marangoni numbé .= 200.

=81, which ShoW? us h.OW gO.Od the truncation is, at least fOIEI'he resulting limit cycle is stable and the result of numerical
the study of the initial bifurcations. A conclusion can also becomputation is shown in Fig.(@)

made within the model that the first bifurcation is always an” ;i< i, these limit cycles that the role of the surface fluc-

exchange of stabilities. Oscillatory instability does not occury 5tions become apparent. In the absence of the nide
at the onset of convection. It has not been possible to eStalﬂﬁere are no stable limit cycles in the system. It is the cou-
lish the principle of exchange of stabilities within the com- y|ing of the surface fluctuations to the heat diffusion that
plete set of Navier-Stokes’ equations and the heat diffusiogjives rise to the stable limit cycle. It is our contention that
equation. However, the onset of convection is always staexperiments on Marangoni convection, when carried on be-
tionary in all experiments with large aspect ratio. The oscil-yond the initial onset, will show onset of oscillations in large
latory convection can occur only for small aspect ratios.  aspect ratio systems.

Now, for steady convection state, the nontrivial fixed The limit cycle is stable over a small window. M is
point of Eqgs.(11)—(14) is given by raised beyond that, the chaotic state appéBig. 2). The
interesting point about this attractor is its geometry. The
strange attractor in the standard Lorenz case corresponds to
the trajectory randomly switching from the neighborhood of
unstable fixed point to another. Here the attractor is formed

169( 13 )( 1 1) from the destabilization of a limit cycle and is essentially
_ —9oCr '

, 169(1Mo—1/M)

0" 2 13M—-9Cr’ (19

2 —
Co= 32

M M, M (200 centered around an unstable fixed point.

In summary, we have carried out a Lorenz model study of

169/ 1 1 the Marangoni convection occurring at a finite wave number.
Do:_(__ _)_ (21)  This supplements the study of Golovet al. [12] for the
8 \Mp M long-wavelength convection, using an amplitude equation

, o L . approach. Within our approach, we have managed to show
Ztrglr; ttrr:aet f;g?;%rge?fi;hﬁi;g%dnE/Of'(r;:’ it can be said Immedl't_hat for the Iarg_e aspect ratio system, the princ_iple of stabili-
ties is true. This result has not been proven in general for
13 1 Marangoni convection. Based on our model, we have shown
M <3 Cor (22)  that cylindrical rolls will undergo a Hopf bifurcation as the
first secondary instability. This feature is absent in the
Rayleigh-Benard convection, where the oscillation has to do
with the axis of the cylindrical rolls. Our model does not
include modes giving three-dimensional structure, but it does
make a prediction for a simple situation. This should provide
motivation for experimental investigation of the secondary
instabilities, which in the long run can inspire more compli-

cated models.

From experimental data we know that typical value€ofis
1073, and this makes the range of validity cover a larg
range of M. The nontrivial fixed point of Eqs(19)—(21)
exists forM>M, and it is easy to see that the bifurcation is
forward. Our contention regarding the first bifurcation is sup-
ported by numerical integration of Eq€l1)—(14). For Cr
=10 *, we show in Figs. (&) and Xb), the trajectory set-

tling down to the trivial fixed point folM <85 and to the

nontrivial fixed point forM >85. Note that folM =150, the ACKNOWLEDGMENT
fixed point, where the trajectories end up in Figb)l ends One of the authorgK.S.D.) would like to thank CSIR
up matching exactly with the nontrivial fixed point shown in India [Award No0.9/80267)/97-EMR-I] for partial financial
Egs.(19-(22). assistance.
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